Cytokines-induced-memory-like NK cells with reduced NKG2A checkpoint signaling

Background:
Two main immune cell types are currently being researched for cancer immunotherapy applications: natural killer (NK) and T cells. NK cells are relatively short-lived, therefore making the therapy less susceptible to some of the side effects currently associated with using T cells for immunotherapy. And unlike T cells, NK cells are unique in that they can recognize cells in the absence of antibodies and MHC signaling to increase speed of the immune reaction. However a remaining issue with NK cells are the inhibitory signals that are expressed on the cell surface and control cell activation. NK cells have the potential to be highly effective tools in treating cancer, however two essential limitations are the efficiency of cell expansion during adoptive transfer and the inhibitory signals that control NK cell function.

Technology Description:
The technology is based on the method of using memory-like NK cells as a therapeutic for cancers such as AML. Using interleukin signaling as an activator, the cells then differentiate into cytokine-induced memory-like (CLIM) NK cells with potent anti-tumor properties. Additionally, inhibitory signals from receptor NKG2A are reduced to improve clinical responses. This technology represents a hugely promising therapeutic opportunity by presenting a novel method for concurrent production of CIML NK cells with the elimination of inhibitory signaling to create highly effective anti-tumor responses. These cells are currently being used in early phase clinical trials for acute myeloid leukemia (AML) patients with promising results.

Advantages:
- Superior efficacy
- Early phase clinical trial data for AML patients
- Removal of inhibitory signaling from NK cells increases potency

Patent/Patent Application: Patent Pending

Related Publication: Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. *Science Translational Medicine.* 2016. PMID 27655849

Lead Inventor:
Todd Fehringer, MD, PhD – Associate Professor, Hematology & Oncology

Licensing Contact
David Silva, Ph.D.
(314) 747-0923
dsilva@wustl.edu

WU Reference Number
017001

Application Space
Cancer therapy, immunotherapy