Chemoenzymatic Synthesis of β-lactones and β-hydroxy acids

Background:
β-Lactones are a class of biologically active molecules containing a reactive ester that have the potential to treat obesity, diabetes, infections, and cancer. β-Lactones are difficult to synthesize because high instability due to ring strain. Current synthetic methodologies for preparing enantiomerically pure β-lactones and precursor β-hydroxy acids are limited by multiple steps, low yields, non-catalytic reactions, and lack of stereochemical control.

Technology Description:
Researchers at Washington University have developed a novel enzymatic process to synthesize structurally diverse peptide β-lactones and β-hydroxy acids including active pharmaceutical ingredients and natural products. The process enables the enantio- and diastereoselective synthesis of peptide β-lactones and β-hydroxy acids from simple aldehydes. The starting aldehydes are first converted to chiral β-hydroxy acids using a robust and highly stereoselective L-threonine aldolase that outperforms most industrially utilized aldolases in terms of stability, robustness, catalytic efficiency, enantioselectivity, diastereoselectivity, and substrate scope. The resulting α-amino-β-hydroxy acids can be converted into peptides and cyclized to the C-terminal β-lactone derivatives using an efficient non-ribosomal peptide synthetase catalyst. The simplicity, selectivity, and scope of this chemoenzymatic approach to high value β-lactones and β-hydroxy acids is unmatched by existing synthetic and enzymatic techniques.

Key Advantages:
- High stereoselectivity, catalytic efficiency, and scalability
- Broad substrate scope and robust performance in batch and flow applications
- Enzymatic process is easier, higher yielding, more stereoselective, and more cost effective than the current chemical syntheses

Patent/Patent Application: Pending

Publication: Schaffer et al., Nature Chemical Biology online May 15, 2017

Lead Inventor:
Timothy A. Wencewicz, Ph.D, Chemistry, Biochemistry Program, Molecular Microbiology and Microbial Pathogenesis Program, Assistant Professor, Washington University in St. Louis

<table>
<thead>
<tr>
<th>Licensing Contact</th>
<th>Application Space</th>
<th>WUSTL Case#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Hippenmeyer</td>
<td>Biopharma</td>
<td>016508</td>
</tr>
<tr>
<td>hippenmeyerp@wustl.edu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>314.747.0609</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>